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Abstract— In this project composite laminate 
optimization code was developed using 
genetic algorithm in ANSYS APDL code. 
Now a day’s composite material widely used 
in many industries like aerospace, 
automobile, marine, structural industries and 
many more, due to high strength to weight 
ratio. The main objective of this research is 
economically use the composite material by 
optimization techniques. The strength of the 
Laminated structures is depends upon the 
fiber angle, thickness, material, sequence of 
layer and no of layer. To find the optimized 
combination of above parameter is very 
difficult by traditional methods, it may struck 
in to local optimum. To avoid the above 
difficulties global searching algorithm like 
genetic algorithm were used. 
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1.INTRODUCTION 
Composite materials have received substantial 

attention as manufacturing materials. Although 
the high stiffness-to-weight and 
strength-to-weight properties of composite 
materials are attractive, their greatest advantage 
is their ability to be designed to satisfy 
directional strength and stiff nesses for any 
particular loading, or multi-loading, of the 
structure. In laminated composite structures, 
each ply has its greatest stiffness and strength 
properties, along the direction, through which 

the fibers are oriented in. By orienting each layer 
at different angles, the structure can be designed 
for a specific loading environment. Along with 
structural performance and weight, cost is an 
area of great interest when considering 
optimization studies in structural design. 
Obviously, reducing the amount of material 
required for the structure, minimizes the cost of a 
laminate composite. However, another method 
for cost reduction is to allow more than one 
material in the stacking sequence. Thus, it is 
possible to use layers of low cost material at 
locations, in the structure, where performance is 
less important. In general, the problem of 
composite laminate stacking sequence 
optimization has been formulated as a 
continuous design problem, and solved using 
gradient based techniques. These methods of 
solution present several disadvantages: 

 
Stacking sequence design often involves 

design variables, which are limited to small 
discrete sets of values of ply thickness, 
orientation angle or material type, due to 
manufacturing or cost limitations, therefore, 
these methods require the transformation of 
these variables into continuous variables, in 
order that a solution might be obtained, 
Converting the continuous solutions back to 
discrete feasible values, often produces 
sub-optimal, or even  infeasible designs, 
Composite laminate design problems often have 
discontinuous objective functions, exhibiting 
multiple designs with similar performances, 
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involving many local optimum designs. Genetic 
Algorithms are suitable optimization algorithms 
for problems with discrete design variables. Its 
implementation does not require any evaluation 
of gradients which, together with its easiness of 
implementation, make it worthwhile 
investigating. Although, Genetic Algorithms 
require many function evaluations, which reflect 
in large computational costs, there are many 
reported applications of Genetic Algorithms to 
the design of composite structures. Genetic 
algorithms have been applied to stacking 
sequence optimization of composite plates, 
(Callahan and Weeks, 1992), to stiffened 
composite panel design (Nagendra et al., 1996), 
design of laminated composite panels 
(Hajela,1990) (Leung and Nevill, 1994) 
(Fernandes et al., 1998)(Haftka, 1998). 

 
The design of optimal composite laminates has 

been shown to be well suited to the defining 
characteristics of genetic algorithms. 
Techniques for improving the efficiency of this 
methodology have been explored for several 
problems using local improvement, memory, 
migration, and varied selection schemes [13]. 
For large structures, such as the design of a wing 
or fuselage, the optimization is divided into 
smaller, tractable, sub problems using 
predefined local loads to constrain the 
optimization [13], [1], [9]. Isolated local 
optimization results in widely varying stacking 
sequence orientations between adjacent panels 
that causes serious manufacturing difficulties 
and, hence, generates the need for a globally 
blended solution. Design of a fiber-reinforced 
composite laminate requires the specification of 
the stacking sequence, which is defined by the 
orientation and material type of each ply layer, 
creating a discrete optimization problem. It is 
computationally expensive to design an entire 
wing or fuselage structure with the panels 
optimized simultaneously. Instead, local panels 
are commonly optimized for the specified local 
loads by ignoring the possible continuity of 
some or all of the layers from one panel to 
another across the structure. Soremekun et al. 

  
 
[18] introduced multiple elitist selection 

schemes that by nature aid in discovering 
alternative designs with similar fitness values. In 
a standard elitist selection strategy only a single 
member of a parent population can survive the 
selection process without being modified and be 
placed in the child population. In a multiple 
elitist selection strategy the genetic algorithm 
allows a greater number of high fitness members 
to survive the selection process at each 
generation. Application of GAs for optimization 
of composite structures was reported by Hajela 
(1989, 1990). Callahan and Weeks (1992) used a 
GA to maximize strength and stiffness of a 
laminate under in-plane and flexural loads. 
Labossiere and Turkkan (1992) used a GA and 
neural networks for optimization of composite 
materials. Haftka, Watson, G¨urdal and their 
coworkers (Nagendra et al., 1992; Le Riche and 
Haftka, 1993; Nagendra et al., 1993a,b; G¨urdal 
et al., 1994; Le Riche, 1994; Soremekun, 1997) 
have developed specialized GAs for stacking 
sequence optimization of composite laminates 
under buckling and strength constraints. Sargent 
et al. (1995) compared GAs to other random 
search techniques for strength design of 
laminated plates. 

 
The applications of GA methods in the field of 

composite structure optimization include the 
weight minimization of stiffened panels and 
shells (Harrison et al., 1995,Nagendra et al., 
1996; Kallassy and Marcelin, 1997; Jaunky et 
al., 1998,Kaletta and Wolf, 2000; Gantovnik et 
al., 2003b; Kang and Kim, 2005), the strength 
optimization of plates with open holes (Todoroki 
et al., 1995,Sivakumar et al., 1998), the 
improvement of the energy absorption capability 
of composite structures (Woodson et al., 
1995,Averill et al., 1995; Crossley and 
Laananen, 1996), the optimization of 
sandwich-type composite structures (Malott et 
al., 1996,Kodiyalam et al., 1996; Wolf, 2001; 
Gantovnik et al., 2002b; He and Aref, 2003; Lin 
and Lee, 2004), the optimization of dimensional 
and thermal buckling stability under 
hygrothermal loads (Le Riche and Gaudin, 1998; 
Spallino and Thierauf, 2000), the strain energy 
minimization of laminated composite plates and 
shells (Potgieter and Stander, 
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1998),maximizing the fundamental frequency 

of the laminated composite structure (Sivakumar 
et al., 1998), the stacking sequence blending of 
multiple composite laminates (Soremekun et al., 
2001, 2002; Adams et al., 2003; Seresta et al., 
2004; Adams et al., 2004), the optimization of 
electromagnetic absorption in laminated 
composite structures (Matous and Dvorak, 
2003), the optimization of composite structures 
considering mechanical performance and 
manufacturing cost (Park et al., 2004), the 
optimization of composite tire reinforcement 
(Abe et al., 2004), the optimization of 
composites against impact induced failure 
(Rahul et al.,2005).A GA is a powerful 
technique for search and optimization problems 
with discrete variables, and is therefore 
particularly useful for optimization of composite 
laminates. However, to reach an optimal solution 
with a high degree of confidence typically 
requires a large number of function evaluations 
during the optimization search. Performance of 
GAs is even more of an issue for problems with 
mixed integer design variables. Several studies 
have concentrated on improving the reliability 
and efficiency of GAs. The proposed project is 
the extension of the study by Kogiso et al. 
(1994b,a), where, in order to reduce the 
computational cost, the authors used memory 
and local improvements so that information from 
previously analyzed design points is utilized 
during a search. In the first approach a memory 
binary tree was employed for a composite panel 
design problem to store pertinent information 
about laminate designs that have already been 
analyzed (Kogiso et al., 1994b). After the 
creation of a new population of designs, the tree 
structure is searched for either a design with 
identical stacking sequence or similar 
performance, such as a laminate with identical 
in-plane strains. Depending on the kind of 
information that can be retrieved from the tree, 
the analysis for a given laminate may be 
significantly reduced or may not be required at 
all. The second method is called local 
improvement 

 
2. GENETIC ALGORITHM OVERVIEW 
Genetic algorithms are robust, stochastic and 

heuristic optimization methods based on 
biological evolution process. There are several 
optimization techniques that are used in the 
context of engineering design optimization. 
Genetic algorithm is one such technique and is a 
search strategy based on the rules of natural 
genetic evolution. The standard genetic 
algorithm proceeds as follows: an initial 
population of individuals is generated at random. 
Every evolutionary step, known as a generation, 
the individuals in the current population are 
decoded and evaluated according to some 
predefined quality criterion, referred to as fitness 
function. To form a new population (the next 
generation), individuals are selected according 
to their fitness. Selection alone cannot introduce 
any new individuals into the population, i.e. it 
cannot find new points in the search space. 
These are generated by genetically-inspired 
operators, of which the most well known are 
crossover and mutation. Crossover is performed 
with crossover probability between two selected 
individuals. The mutation operator is introduced 
to prevent premature convergence to local 
optima by randomly sampling new points in the 
search space. Genetic algorithms are stochastic 
iterative processes that are not guaranteed to 
converge; the termination condition may be 
specified as some fixed maximal number of 
generations or as the attainment of an acceptable 
fitness level. 

 
Genetic operators 
Establishing the GA parameters is very crucial 

in an optimization problem because they greatly 
affect the performance of a GA [6]. The genetic 
algorithm contains several operators, e.g. 
reproduction, crossover and mutation. 

 
(a) Reproduction 
The reproduction operator allows individual 

strings to be copied for possible inclusion in the 
next generation. After assessing the fitness value 
for each string in the initial population, only a 
few strings with a high fitness value are 
considered in their production. There are many 
different types of reproduction operators 
including proportional selection, tournament 
selection, ranking selection, etc. In this study, 
tournament selection is selected, since it has 
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better convergence and computational time 
compared to any other reproduction operator 
(Deb, 1999). In tournament selection, two 
individuals are chosen from the population at 
random, and then the string which has best 
fitness value is selected. This procedure is 
continued until the size of the reproduction 
population is equal to the size of the population. 

(b) Crossover 
Crossover is the next operation in the genetic 

algorithm. This operation partially exchanges 
formation between any two selected individuals. 
Crossover selects genes from parent 
chromosomes and creates new offspring. 

(c) Mutation 
 
This is the process of randomly modifying the 

string with small probability. Mutation operator 
changes 1 to 0 and vice versa with a small 
probability of mutation (Pm). The need for 
mutation is to keep diversity in the population. 
This is to prevent solutions in the population 
from being trapped in local optima as the 
problem is solved. 

 
3. Implementation of Genetic Algorithm in 

ANSYS software 
 
a. First create the model in Ansys software or 

import the model from any modeling software. 
 
b. Apply the loading and boundary conditions. 
 
c. Then run optimization algorithm in Ansys 

software 
 
d. Automatically Meshing is created and 

solution is solved in the software .The best 
result (stress and volume) for each 
iterations (reproduction, crossover, 
 
mutation, addition, deletion and alteration ) is 

stored in separate file. 
 
4. Optimization Algorithm 
 
Composite laminate optimization was carried 

out for different practical problems with 
following design variables (no of layers, 
thickness, material, angle and sequence of layers 

) 
 
The procedure is given below 
 
(a) Reproduction (iteration 1) 
  

In this process laminate design variables are 
randomly generated and results were stored for 
different combinations. 

 
(b) Crossover (iteration 2) 
The best sequence from previous iteration was 

selected based on high fitness 
 
Fitness[i] =1-stress[i]/stress [max] or 
 
Fitness[i] =1-volume[i]/volume [max] 
 
In this iteration, laminate sequence were 

randomly changed from one sequence (parent1) 
to another sequence (parent2) for producing new 
sequences (child1 and child2).This concept is 
applicable for material, angle and thickness 
sequences. 

 
Sequence1 Sequence2 Before crossover 

1 3 4 2 5  8 7 8 
After crossover    
1 3 4 7 8  8 2 5 
       

For example two materials (M1,M2), three 
thickness(5mm,10mm,15mm) and three 
angles(0,45,90) were taken for crossover 
operation 

 
The best sequence1 (parent 1) 
 
Total no layer = 5 

Position  1 2 3 4 5 
Material = M1 M2 M1 M2  M1 
Sequence       
Thickness = 5 5 10 10 15 
Sequence       
Angle = 45 0 90 90 45 

 
Sequence 
 
The best sequence 2 (parent 2) 
 
Total no layer = 5 

Position  1 2 3 4 5 
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Material = M2 M2 M1 M1 M1 
Sequence       
Thickness = 5 15 10 5 5 

 
Sequence 
 
Angle = 45 90 45 90 0 Sequence 
 
After cross over (child 1) 
 
Total no layer = 5 

Position  1 2 3 4 5 

Material = M1 M2 M1  M1  M1 
Sequence     

5 
 

5  
 

Thickness = 5 5 10   
Sequence     

90 0 
 

Angle = 45 0 90  
Sequence           
 
After cross over (child 2) 
 
Total no layer = 5 

Position  1 2 3 4  5   

Material = M2 M2 M1   M2  M1 
Sequence 

           

    
 10 15 

  
Thickness = 5 15 10   
Sequence    

45  90  45 Angle = 45 90 
            

Sequence 
 
The above process is called single point 

crossover with right side shifting 
 
Crossover operations are classified into 
 
1. Single crossover with right shifting 
 
2. Single crossover with left shifting 
3. Single crossover with left to right cross 

shifting 
 
4. Single crossover with right to left cross 

shifting 
 
The best results from above four operations 

are stored. 
 
(c) Mutation 
 

The best sequence from previous iteration was 
selected based on high fitness. In this process 
variables are randomly exchange in between the 
single sequence itself. It is shown in below 
Sequence1      
Before Mutation After Mutation 
1 3 4 2 5 1 3 5 2 4  
       

The above process is repeated for all best 
sequences and result was stored. 

 
(d) Addition 
 
The best sequence from previous iteration was 

selected based on high fitness. In this process 
variables are added randomly in the best 
sequence It is shown in below 
Sequence1    
Before Addition After Addition 
13425 1342523  
    

The above process is repeated for all best 
sequences and result was stored. 

 
(e) Deletion 
 
The best sequence from previous iteration was 

selected based on high fitness. In this process 
variables are deleted randomly in the best 
sequence It is shown in below 

 
Sequence1 
Before Deletion After Deletion 
 
13425 1325 
 
The above process is repeated for all best 

sequences and result was stored. 
 
(f) Alteration 
 
The best sequence from previous iteration was 

selected based on high fitness. In this process 
variables are altered randomly in the best 
sequence It is shown in below 

 
Sequence1    
Before Alteration After Alteration 
1 3 4 2 5 1 3 2 2 5 
     
 
The above process is repeated for all best 
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sequences and result was stored. This is called 
one generations. 

 
Finally the over all best result from above six 

operations was plotted and stored. The same 
process was repeated for 50 numbers of 
generations. The optimization algorithm is 
shown in following Fig 1. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Genetic Algorithm for composite 

laminate optimization 
 
4.CASE STUDIES 
Genetic algorithm successfully implemented 

in following practical problems. The details of 
the inputs are shown below 

 
1. Number of Material 
 
2. Maximum Number of layer 
3. Number of thickness 
4. Number of angle 
5. Loading & Boundary conditions 
6. Model imported / created 
7. Number of generations 
 
All problems considered with following 

material properties E1= 10,000 N/mm2, E2= 
 
10,000 N/mm2,E3= 250,000 N/mm2, 

12=0.25, 23=0.01, 31=0.25,G12=2000 

 
 N/mm2,G23=5000 N/mm2,G31=5000 

N/mm2, =7850 Kg/mm3 
 
4.1 Plate with hole 
A plate is subjected to biaxial load (1000 N) as 

shown in Figure 2. Following inputs were used 
 
 
 

1. Number of Material =1  
2. Maximum Number of layer (N) =8 
3. Number of thickness =1 (2mm) 
4. Number of angle =2 (45,- 

 45)   
5. Number of generations =50  

The best results obtained in the 35th iteration 
as shown in below table 1 

 
 
 
 
 
 
 
 
 
Figure. 2a 
 
 
 
 
 
 
 
 
 
 
Figure 2a,b. Optimized stress distribution of 

plate with hole 
 
4.2 Bumper with front & side load 
A bumper is subjected to biaxial load (10000 

N) as shown in Fig. 3. Following inputs were 
used 

1. Number of Material =1 
2. Maximum Number of layer (N) =4 
3. Number of thickness =1 (3mm) 
4. Number of angle =3 (0,45,90) 
5. Number of generations = 50 
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The best results obtained in the 23rd iteration 
as shown in below table 2. 

 
 
 
 
 
 
 
 
 
Table 1.Optimum results at 35th iteration 

 
CONCLUSION: 
The global optimized genetic algorithm plays 

major role in composite optimization. The above 
algorithm can applicable for any type of 
problems with known loading and boundary 
conditions. Further the computation time will be 
reduced by using cluster based optimization i.e 
many computers simultaneously involved in 
optimization process. In future this work may 
extended to failure criteria approach and 
dynamic problems. 
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